A CLASSIFICATION OF BAIRE-1 FUNCTIONS

P. KIRIAKOULI

ABSTRACT. In this paper we give some topological characterizations of bounded Baire-1 functions using some ranks. Kechris and Louveau classified the Baire-1 functions to the subclasses $\mathbb{B}_1^\xi(K)$ for every $\xi < \omega_1$ (where K is a compact metric space). The first basic result of this paper is that for $\xi < \omega$, $f \in \mathbb{B}_1^{\xi+1}(K)$ iff there exists a sequence (f_n) of differences of bounded semicontinuous functions on K with $f_n \to f$ pointwise and $\gamma((f_n)) \leq \omega^\xi$ (where " γ " denotes the convergence rank). This extends the work of Kechris and Louveau who obtained this result for $\xi = 1$. We also show that the result fails for $\xi \geq \omega$. The second basic result of the paper involves the introduction of a new ordinal-rank on sequences (f_n) , called the δ -rank, which is smaller than the convergence rank γ . This result yields the following characterization of $\mathbb{B}_1^\xi(K)$: $f \in \mathbb{B}_1^\xi(K)$ iff there exists a sequence (f_n) of continuous functions with $f_n \to f$ pointwise and $\delta((f_n)) \leq \omega^{\xi-1}$ if $1 \leq \xi < \omega$, resp. $\delta((f_n)) \leq \omega^\xi$ if $\xi \geq \omega$.

Introduction

Let K be a compact metric space and C(K) the set of continuous real-valued functions on K. A function $f:K\to\mathbb{R}$ is Baire-1 if there exists a sequence (f_n) in C(K) that converges pointwise to f. Let $\mathbb{B}_1(K)$ be the set of bounded Baire-1 functions on K. Haydon, Odell and Rosenthal in [H-O-R] and Kechris and Louveau in [K-L] defined the oscillation rank $\beta(f)$ of a general function $f:K\to\mathbb{R}$ and proved that f is Baire-1 iff $\beta(f)<\omega_1$. Also, for every ordinal $\xi<\omega_1$ the subclass $\mathbb{B}_1^\xi(K)$ was defined by Kechris and Louveau in [K-L] to be the set of all f in $\mathbb{B}_1(K)$ such that $\beta(f)\leq\omega^\xi$, and it was proved that f in $\mathbb{B}_1^1(K)$ iff f is the uniform limit of differences of bounded semicontinuous functions on K (Theorem 3). Theorem 3 was originally proved in [H-O-R] (where $\mathbb{B}_1^1(K)$ is called $\mathbb{B}_{1/2}(K)$). This is in fact stated in [K-L], just before the statement of their Theorem 1, Section 3.

In this paper we give a general result for $\mathbb{B}_1^{\xi}(K)$ which is analogous to the above result for $\mathbb{B}_1^1(K)$.

In Theorem 7, we obtain the result that for $\xi < \omega$, $f \in \mathbb{B}_1^{\xi+1}(K)$ iff there exists a sequence (f_n) in DBSC(K) with $f_n \to f$ pointwise and $\gamma((f_n)) \le \omega^{\xi}$ (where " γ " denotes the convergence rank, whose definition is recalled below). This extends the work of [K-L], who obtained this result for $\xi = 1$. We also show in Corollary 9 that the result fails for $\xi \ge \omega$; indeed we obtain there that if $f_n \to f$ pointwise and $\gamma((f_n)) \le \omega^{\xi}$ with $(f_n) \subset \text{DBSC}(K)$, then also $\beta(f) \le \omega^{\xi}$. Also Proposition 12 shows that Theorem 7 fails if we suppose in addition that $\sup_n |f_n|_D < \infty$. In Theorem 8 we obtain that if $f_n \to f$ pointwise, with f_n 's Baire-1 functions, λ a

Received by the editors July 11, 1994 and, in revised form, December 28, 1995. 1991 Mathematics Subject Classification. Primary 03E15, 04A15, 46B99, 54C50.

limit ordinal, and $m < \omega$, with $\gamma((f_n)) \leq \omega^{\lambda+m}$ and $\sup_n \beta(f_n) < \omega^{\lambda}$, then f is Baire-1 with $\beta(f) \leq \omega^{\lambda+m}$. In Proposition 10 we show by example that this result fails, if we allow $\sup_n \beta(f_n) = \omega^{\lambda}$ instead (for $\lambda = \omega$).

The final result of the paper, Theorem 17, involves the introduction of a new ordinal-rank on sequences (f_n) , called the δ -rank, which is smaller than the convergence rank γ . This is motivated by a characterization of $\mathbb{B}_{1/4}(K)$ given in [H-O-R]. Theorem 17 yields the following characterization of $\mathbb{B}_1^{\xi}(K)$, analogous to the $\mathbb{B}_{1/4}(K)$ characterization given in [H-O-R]: $f \in \mathbb{B}_1^{\xi}(K)$ iff there exists a sequence (f_n) of continuous functions with $f_n \to f$ pointwise and $\delta((f_n)) \leq \omega^{\xi-1}$ if $1 \leq \xi < \omega$, resp. $\delta((f_n)) \leq \omega^{\xi}$ if $\xi \geq \omega$. In fact, such a sequence (f_n) may be chosen as convex blocks of any sequence (g_n) of continuous functions converging pointwise to f; the analogous result for the γ -rank is due to Kechris and Louveau, and used in a fundamental way in the proof.

1. Definition. Let K be a compact metric space, $f: K \to \mathbb{R}, P \subset K$ and $\varepsilon > 0$. Let $P_{\varepsilon,f}^0 = P$ and for any ordinal number a let $P_{\varepsilon,f}^{a+1}$ be the set of those $x \in P_{\varepsilon,f}^a$ such that for every open set U around x there are two points x_1 and x_2 in $P_{\varepsilon,f}^a \cap U$ such that $|f(x_1) - f(x_2)| \ge \varepsilon$.

At a limit ordinal a we set

$$P^a_{\varepsilon,f} = \bigcap_{\beta < a} P^\beta_{\varepsilon,f}.$$

Let

$$\beta(f,\varepsilon) = \begin{cases} \text{the least a with $K^a_{\varepsilon,f} = \varnothing$ if such an a exists,} \\ \omega_1, & \text{otherwise.} \end{cases}$$

Define the **oscillation rank** $\beta(f)$ of f by

$$\beta(f) = \sup \{ \beta(f, \varepsilon) : \varepsilon > 0 \}.$$

The above rank is defined by Haydon, Odell and Rosenthal in [H-O-R] and Kechris and Louveau in [K-L].

Let (f_n) be a sequence of real functions on $K, P \subset K$ and $\varepsilon > 0$. Let $P_{\varepsilon,(f_n)}^0 = P$ and for any ordinal number a let $P_{\varepsilon,(f_n)}^{a+1}$ be the set of those $x \in P_{\varepsilon,f}^a$ such that for every open set U around x and any p in \mathbb{N} , there are n and m in \mathbb{N} with n > m > p and there is x' in $P \cap U$ with $|f_n(x') - f_m(x')| \ge \varepsilon$.

At a limit ordinal a we set

$$P_{\varepsilon,(f_n)}^a = \bigcap_{\beta < \alpha} P_{\varepsilon,(f_n)}^{\beta}.$$

Let

$$\gamma((f_n), \varepsilon) = \begin{cases} \text{the least } a \text{ with } K^a_{\varepsilon, (f_n)} = \emptyset \text{ if such an } a \text{ exists,} \\ \omega_1, & \text{otherwise.} \end{cases}$$

Define the **convergence rank** $\gamma((f_n))$ of (f_n) by

$$\gamma((f_n)) = \sup \{ \gamma((f_n), \varepsilon) : \varepsilon > 0 \}.$$

The derivative sets $P^1_{\varepsilon,(f_n)}$ are defined by Zalcwasser in [Z], Gillespie and Hurwicz in [G-H]. The convergence rank is defined by Kechris and Louveau in [K-L].

Remark 1. (i) By compactness of K it is easy to see that $\beta(f,\varepsilon)$ and $\gamma((f_n),\varepsilon)$ are isolated ordinals for all positive real number ε .

- (ii) As in the proof of Corollary 4, section 2 of [K-L], it is easy to prove that $\beta(X_A) = \beta(X_A, 1/2)$ and hence $\beta(X_A)$ is an isolated ordinal.
- **2. Definition** ([H-O-R], [K-L]). Let K be a compact metric space.
- (a) DBSC(K) is the class of differences of two bounded semicontinuous real-valued functions on K. Without difficulty it can be shown that DBSC(K) coincides with the class of those $F: K \to \mathbb{R}$ for which there exist $(f_n) \subset C(K)$ and $C \in \mathbb{R}$ such that $f_0 = 0, f_n \to F$ pointwise, and $\sum_{n=0}^{\infty} |f_{n+1}(y) f_n(y)| \leq C$ for all $y \in K$.
- (b) We define $|\cdot|_D : \mathrm{DBSC}(K) \to \mathbb{R}$ using (a) as follows: $|F|_D$ is the infimum of all positive numbers C satisfying the condition in (a). Then $|\cdot|_D$ is a norm and $\mathrm{DBSC}(K)$ with $|\cdot|_D$ is a Banach space.
- **3. Theorem** ([K-L], Theorem 1, Section 3). $\mathbb{B}_1^1(K)$ is the sup-norm-closure of DBSC(K).
- **4. Proposition** ([K-L], Lemma 5, Section 2). Let K be a compact metric space, $(f_n), (g_n)$ be the two sequences of functions on K, pointwise converging to f and g respectively. If $\xi < \omega_1$ is such that $\gamma((f_n)) \leq \omega^{\xi}$ and $\gamma((g_n)) \leq \omega^{\xi}$, then $\gamma((f_n + g_n)) \leq \omega^{\xi}$.
- **5. Theorem** ([K-L], Theorem 3, Section 2). Let (f_n) be a bounded sequence of continuous functions on K, pointwise converging to some (bounded) Baire-1 function f.

Then there exists a sequence (g_n) of convex blocks of (f_n) with $\gamma((g_n)) = \beta(f)$.

The following proposition is due to Kechris and Louveau, [K-L], Prop. 9, Section 2.

6. Proposition. Let $f \in \mathbb{B}_1(K)$, $f \geq 0$ and $\xi < \omega_1$ with $\beta(f) \leq \omega^{\xi}$ and $n \in \mathbb{N}$, n > 2. Then there are n - 2 sets A_1, \ldots, A_{n-2} with $\beta(X_{A_k}) < \omega^{\xi}$, such that the function

$$g = \frac{\|f\|_{\infty}}{n} \sum_{k=1}^{n-2} X_{A_k}$$

satisfies $0 \le g \le f \le g + 2||f||_{\infty}/n$.

7. Theorem ([K-N]). Let K be a compact metric space, $\xi < \omega$ an ordinal and $f \in \mathbb{B}_1(K)$. Then $f \in \mathbb{B}_1^{\xi+1}(K)$ if and only if there is a sequence $(f_n) \subset \mathrm{DBSC}(K)$ converging pointwise to f such that $\gamma((f_n)) \leq \omega^{\xi}$.

Proof. Necessity. Let $f \in \mathbb{B}_1^{\xi+1}(K)$. Then $\beta(f) \leq \omega^{\xi+1}$.

Case 1. We assume that $f = X_A$. Then by Remark 1(ii) $\beta(X_A)$ is isolated and hence $\beta(X_A) < \omega^{\xi+1}$. Then there is $k < \omega$ such that $\beta(X_A) < k\omega^{\xi}$. Then there is a decreasing sequence $(F_{\eta})_{\eta < k\omega^{\xi}}$ of closed subsets of K such that

$$A = \bigcup_{\substack{\eta < k\omega^{\xi} \\ \eta \text{ even}}} (F_{\eta} \setminus F_{\eta+1}).$$

We set

$$A_i = \bigcup \{ (F_\eta \setminus F_{\eta+1}) : i\omega^{\xi} \le \eta < (i+1)\omega^{\xi}, \eta \text{ even} \} \quad \forall i = 0, 1, \dots, k.$$

Then $X_A = X_{A_1} + \cdots + X_{A_k}$. By Proposition 4 we shall show the conclusion for $X_{A_i}, i = 0, 1, \dots, k.$

Without loss of generality we can assume that k = 1, that is,

$$A = \bigcup_{\substack{\eta < \omega^{\xi} \\ \eta \text{ even}}} (F_{\eta} \setminus F_{\eta+1}).$$

Let $\{\eta_1, \eta_2, \dots, \eta_n, \dots\}$ be an enumeration of the set $\{\eta : \eta \text{ even with } 0 \leq \eta < \omega^{\xi}\}$. For every $n \in \mathbb{N}$ we set:

$$A_n = \bigcup_{i=1}^n (F_{\eta_i} \setminus F_{\eta_i+1}).$$

Then $X_{A_n} \in \mathrm{DBSC}(K)$ for every $n \in \mathbb{N}$ and $X_{A_n} \to X_A$ pointwise.

We shall show that: $\gamma((X_{A_n})) < \omega^{\xi}$.

Let $0 < \varepsilon < 1$. We prove first that $K^1_{\varepsilon,(X_{A_n})} \subset \bigcap_{\eta < \omega} F_{\eta}$.

Let $x \in K^1_{\varepsilon,(X_{A_n})}$ such that $x \notin \bigcap_{\eta < \omega} F_{\eta}$.

Then there exists an open neighborhood V of x such that $\overline{V} \cap \bigcap_{\eta < \omega} F_{\eta} = \emptyset$.

Since K is compact we have that V intersects at most finitely many $(F_{\eta})_{\eta<\omega}$. Then since $(F_n)_{n<\omega^{\xi}}$ is decreasing we have that V intersects at most finite many $F_{\eta_n} \setminus F_{\eta_n+1}, n = 1, 2, \ldots$ Hence there is $n_0 \in \mathbb{N}$ such that $X_{A_n|V} = X_{A_{n_0}|V}$ for every $n \geq n_0$ which is a contradiction, because $x \in K^1_{\varepsilon,(X_{A_n})}$. By induction $K_{\varepsilon,(X_{A_n})}^{\eta} \subset \bigcap_{\eta < n\omega} F_{\eta}$ for every $n < \omega$. Then $K_{\varepsilon,(X_{A_n})}^{\omega} \subset \bigcap_{\eta < \omega^2} F_{\eta}$.

Again by induction, we have: $K_{\varepsilon,(X_{A_n})}^{\omega^n} \subset \bigcap_{\eta < \omega^{n+1}} F_{\eta}$ for every $n < \omega$.

Hence $K_{\varepsilon,(X_{A_n})}^{\omega^{\xi-1}} \subset \bigcap_{\eta < \omega^{\xi}} F_{\eta}$ and since $X_{A_n}(y) = 0$ for every $y \in \bigcap_{\eta < \omega^{\xi}} F_{\eta}$ and $n \in \mathbb{N}$ we have $K_{\varepsilon,(X_{A_n})}^{\omega^{\xi-1}+1} = \emptyset$, that is, $\gamma((X_{A_n})) = \omega^{\xi-1} + 1 < \omega^{\xi}$.

Case 2. Suppose that $f \geq 0$. Then using Theorem 5 we find a sequence (g_n) where $0 \le g_n = \sum_{i=1}^{k_n} a_i^n X_{A_i^n}$ with $\beta(X_{A_i^n}) < \omega^{\xi+1}$ for every $i = 1, 2, \dots, k_n, n \in \mathbb{N}$, such

$$0 \le g_1 + \dots + g_n \le f \le g_1 + \dots + g_n + \frac{\|f\|_{\infty}}{2^{n+2}} \quad \forall n \in \mathbb{N}.$$

Then for every n > 1 we have

$$0 \le g_n = g_1 + \dots + g_n + \frac{\|f\|_{\infty}}{2^{n+1}} - g_1 - \dots - g_{n-1} - \frac{\|f\|_{\infty}}{2^{n+1}}$$
$$\le f + \frac{\|f\|_{\infty}}{2^{n+1}} - f \le \frac{\|f\|_{\infty}}{2^n}.$$

Hence $||g_n||_{\infty} \leq ||f||_{\infty} 2^{-n}$ for any n > 1. Without loss of generality we can assume that $||f||_{\infty} \leq 1$. Then $||g_n||_{\infty} \leq 2^{-n}$ for every n > 1. Also $f = \sum_{n=1}^{\infty} g_n$ uniformly. Since $\beta(X_{A_i^n}) < \omega^{\xi+1}$ for every $i = 1, 2, ..., k_n, n \in \mathbb{N}$, and by Case 1 and

Proposition 4 we have that, for each $n \in \mathbb{N}$, there is $(g_n^p) \subset \mathrm{DBSC}(K)$ pointwise converging to g_n such that $g_n^p \geq 0$ for every $p \in \mathbb{N}$ and $\gamma((g_n^p)) \leq \omega^{\xi}$. For $\xi = 0$ this is proved by Kechris and Louveau (cf. [K-L]).

Since $\|g_n^p\|_{\infty} \leq \|g_n\|_{\infty} \leq 2^{-n}$ for every n > 1 and $\|g_1^p\|_{\infty} \leq \|g_1\|_{\infty}$ for every $p \in \mathbb{N}$, we have that for any $p \in \mathbb{N} \sum_{n=1}^{\infty} g_n^p < \infty$ uniformly. For any $p \in \mathbb{N}$ we set $g^p = \sum_{n=1}^{\infty} g_n^p$. Since $g_n^p \in \mathrm{DBSC}(K)$ for every $n \in \mathbb{N}$ and

the convergence of the series is uniform we have $g^p \in \mathbb{B}^1_1(K)$ for every $p \in \mathbb{N}$.

Then, by Theorem 3 we have that for every $p \in \mathbb{N}$ there exists $f_p \in DBSC(K)$ such that $||g^p - f_p||_{\infty} < \frac{1}{p}$. Then since (g^p) is pointwise converging to f we have that and the sequence (f_p) is also pointwise converging to f.

The proof of Case 2 can be finished by proving that $\gamma((f_n)) \leq \gamma((g^p)) \leq \omega^{\xi}$.

We see this, as follows:

Let $\varepsilon > 0$, P be a closed subset of K. We shall show that $P^1_{\varepsilon,(f_p)} \subset P^1_{\varepsilon/2,(g^p)}$.

Let $x \in P^1_{\varepsilon,(f_p)} \setminus P^1_{\varepsilon/2,(g^p)}$. Then there exists an open subset U of P with $x \in U$ and $p_0 \in \mathbb{N}$ such that

$$|g^p(x') - g^{p'}(x')| \le \varepsilon/2 \quad \forall x' \in U, p, p' \ge p_0.$$

Let $p_1 \geq p_0$ with $\frac{2}{p_1} < \frac{\varepsilon}{2}$. Then for each $p, p' \geq p_1$ and $x' \in U$ we have

$$|f_p(x') - f_{p'}(x')| \le |f_p(x') - g^p(x')| + |g^p(x') - g^{p'}(x')| + |g^{p'}(x') - f_{p'}(x')|$$

$$< \frac{1}{p} + \frac{\varepsilon}{2} + \frac{1}{p'} < \varepsilon,$$

a contradiction since $x \in P^1_{\varepsilon,(f_p)}$. Hence $\gamma((f_p)) \leq \gamma((g^p))$. Note that for $q, q' \geq p > 1$, we have

(*)
$$||g^{q} - g^{q'}||_{\infty} \le \left\| \sum_{n \le p} g_{n}^{q} - \sum_{n \le p} g_{n}^{q'} \right\|_{\infty} + 4.2^{-p}.$$

Also, $\gamma((g_n^q)) \leq \omega^{\xi}$ for all $n \in \mathbb{N}$ and by Proposition 4 we have that $\gamma((\sum_{n \leq p} g_n^q)) \leq$ ω^{ξ} and hence by (*) this implies that $\gamma((q^q)) \leq \omega^{\xi}$.

Case 3. (General case). If $f \in \mathbb{B}_1^{\xi+1}(K)$ then $f = f^+ - f^-$ where $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}$. Then $0 \le f^+, f^- \in \mathbb{B}_1^{\xi+1}(K)$ and from Case 2 there are sequences $(f_n^1), (f_n^2)$ in DBSC(K) with (f_n^1) converging pointwise to $f^+, (f_n^2)$ converging pointwise to $f^-, \gamma((f_n^1)) \le \omega^{\xi}$ and $\gamma((f_n^2)) \le \omega^{\xi}$. Then $f_n^1 - f_n^2 \in \mathrm{DBSC}(K)$ for every $n \in \mathbb{N}, (f_n^1 - f_n^2)$ converges pointwise to f and by Proposition 4 we have that $\gamma((f_n^1 - f_n^2)) \le \omega^{\xi}$.

Sufficiency. Let $(f_n) \subset DBSC(K)$ be a sequence converging pointwise to f with $\gamma((f_n)) \leq \omega^{\xi}$. We prove that $\beta(f) \leq \omega^{\xi}$.

Claim. $P_{\varepsilon,f}^{\omega} \subset P_{\varepsilon/3,(f_n)}^1$ for all closed subsets P of K and $\varepsilon > 0$.

[Proof of claim: Let P be a closed subset of K and $x \in P_{\varepsilon,f}^{\omega} \setminus P_{\varepsilon/3,(f_n)}^1$. Then choose an open subset V of P with $x \in V$ and $n_0 \in \mathbb{N}$ such that

$$|f_m(y) - f_n(y)| \le \varepsilon/3 \quad \forall y \in \overline{V}, n \ge n_0.$$

Then $|f_{n_0}(y) - f_n(y)| \leq \varepsilon/3$ for all $y \in \overline{V}$, all $n \geq n_0$ and since (f_n) converges pointwise to f we have that $|f_{n_0}(y) - f(y)| \le \varepsilon/3$ for all $y \in \overline{V}$.

Then, $\overline{V}_{\varepsilon,f}^{\eta} \subset \overline{V}_{\varepsilon/3,f_{n_0}}^{\eta}$ for all $\eta < \omega$. Since $\beta(f_{n_0}) \leq \omega$ we have $\overline{V}_{\varepsilon/3,f_{n_0}}^{\omega} = \emptyset$. Then $V \cap P_{\varepsilon,f}^{\omega} \subset \overline{V}_{\varepsilon,f}^{\omega} \subset \overline{V}_{\varepsilon/3,f_{n_0}}^{\omega} = \emptyset$, a contradiction, since $x \in V \cap P_{\varepsilon,f}^{\omega}$. Hence

the proof of the claim is finished.]

By induction and applying the claim we get

$$K_{\varepsilon,f}^{m\omega} \subset K_{\varepsilon/3,(f_n)}^m \quad \forall m < \omega \Rightarrow K_{\varepsilon,f}^{\omega^2} \subset K_{\varepsilon/3,(f_n)}^\omega.$$

Also, by induction we have $K_{\varepsilon,f}^{\omega^{n+1}} \subset K_{\varepsilon/3,(f_n)}^{\omega^n}$ for all $n < \omega$.

Hence
$$K_{\varepsilon,f}^{\omega^{\xi+1}} \subset K_{\varepsilon/3,(f_n)}^{\omega^{\xi}} = \emptyset$$
 and hence $\beta(f) \leq \omega^{\xi+1}$.

Remark 2. In Theorem 7, the sequence (f_n) can in fact also be chosen uniformly bounded (as the proof shows).

For $\xi = 1$, Theorem 7 was proved by Kechris and Louveau in [K-L].

8. Theorem ([K-N]). Let K be a compact metric space, $f, f_n \in \mathbb{B}_1(K)$, $n \in \mathbb{N}$, with (f_n) converging pointwise to f, $\lambda < \omega_1$ a limit ordinal and $m < \omega$ such that

$$\sup\{\beta(f_n): n \in \mathbb{N}\} < \omega^{\lambda} \quad and \quad \gamma((f_n)) \leq \omega^{\lambda+m}$$

Then
$$\beta(f) \leq \omega^{\lambda+m}$$
.

Proof. Since λ is a limit ordinal and $\sup\{\beta(f_n): n \in \mathbb{N}\} < \omega^{\lambda}$ we choose a strictly increasing sequence (λ_n) such that $\sup_n \lambda_n = \lambda$ and $\sup\{\beta(f_n): n \in \mathbb{N}\} < \omega^{\lambda_1}$.

Claim. $P_{\varepsilon,f}^{\omega^{\lambda_1}} \subset P_{\varepsilon/3,(f_n)}^1$ for all closed subsets P of K and $\varepsilon > 0$.

[Proof of claim: Let $P \subset K$ be closed, $\varepsilon > 0$ and $x \in P_{\varepsilon,f}^{\omega^{\lambda_1}} \setminus P_{\varepsilon/3,(f_n)}^1$. Then there exists an open subset V of P with $x \in V$ and $n_0 \in \mathbb{N}$ such that

$$|f_m(y) - f_n(y)| \le \varepsilon/3 \quad \forall y \in \overline{V}, n, m \ge n_0.$$

Then $|f_{n_0}(y) - f(y)| \le \varepsilon/3 \forall y \in \overline{V}, n \ge n_0$ and hence $\overline{V}_{\varepsilon,f}^{\eta} \subset \overline{V}_{\varepsilon/3,f_{n_0}}^{\eta} \forall \eta < \omega^{\lambda_1}$.

Since
$$\beta(f_{n_0}) \leq \omega^{\lambda_1}$$
 implies that $\overline{V}_{\varepsilon/3,f_{n_0}}^{\omega^{\lambda_1}} = \emptyset$. Also $V \cap P_{\varepsilon,f}^{\omega^{\lambda_1}} \subset \overline{V}_{\varepsilon/3,f_{n_0}}^{\omega^{\lambda_1}}$.

Then $V \cap P_{\varepsilon,f}^{\omega^{\lambda_1}} = \emptyset$, a contradiction. Hence the proof of the claim is finished.]

By induction and applying the claim we get $K_{\varepsilon,f}^{\theta\omega^{\lambda_1}} \subset K_{\varepsilon/3,(f_n)}^{\theta} \forall \theta < \omega^{\lambda}$ and hence $K_{\varepsilon,f}^{\omega^{\lambda}} = \bigcap_{n=1}^{\infty} K_{\varepsilon,f}^{\omega^{\lambda_n+\lambda_1}} \subset \bigcap_{n=1}^{\infty} K_{\varepsilon/3,(f_n)}^{\omega^{\lambda_n}} = K_{\varepsilon/3,(f_n)}^{\omega^{\lambda_n}}$.

By induction we have that $K_{\varepsilon,f}^{n\omega^{\lambda}} \subset K_{\varepsilon/3,(f_n)}^{n\omega^{\lambda}} \forall n < \omega$ and hence $K_{\varepsilon,f}^{\omega^{\lambda+1}} \subset K_{\varepsilon/3,(f_n)}^{\omega^{\lambda+1}}$.

Also, by induction we get $K_{\varepsilon,f}^{\omega^{\lambda+m}} \subset K_{\varepsilon/3,(f_n)}^{\omega^{\lambda+m}} = \emptyset$ and hence $\beta(f) \leq \omega^{\lambda+m}$. \square

Note. Theorems 7 and 8 are due jointly to Professor Negrepontis (cf. [K-N]). I am grateful to Professor Negrepontis for his kind permission to present some of our joint work here.

In the following corollary it is proved that the conclusion of Theorem 7 is not true for $\xi \geq \omega$.

9. Corollary. Le K be a compact metric space, $\omega \leq \xi < \omega_1, f \in \mathbb{B}_1(K)$ and $(f_n) \subset \mathrm{DBSC}(K)$ such that (f_n) is pointwise converging to f and $\gamma((f_n)) \leq \omega^{\xi}$. Then $\beta(f) \leq \omega^{\xi}$.

Proof. If $\xi \geq \omega$ there is a limit ordinal $\lambda \geq \omega$ and $m < \omega$ such that $\xi = \lambda + m$. Also $\sup\{\beta(f_n) : n \in \mathbb{N}\} = \omega < \omega^\omega \leq \omega^\lambda$. Hence by Theorem 8 we have $\beta(f) \leq \omega^\lambda$. \square

10. Proposition. Let K be a scattered compact metric space with $K^{(\omega^{\omega+1})} \neq \emptyset$. Then there is a sequence $(f_n) \subset \mathbb{B}_1(K)$, $f \in \mathbb{B}_1(K)$ such that (f_n) is pointwise converging to f, $\sup\{\beta(f_n): n \in \mathbb{N}\} = \omega^{\omega}$, $\gamma((f_n)) \leq \omega^{\omega+1}$ and $\beta(f) > \omega^{\omega+1}$.

Proof. We set

$$A = \bigcup \{ (K^{(\eta)} \setminus K^{(\eta+1)}) : \eta \text{ even and } \eta < \omega^{\omega+1} \}.$$

Then $\beta(X_A) = \omega^{\omega+1} + 1$. For every $n \in \mathbb{N}$ we set

$$A_n^k = \bigcup \{ (K^{(\eta)} \setminus K^{(\eta+1)}) : \eta \text{ even and } (k-1)\omega^\omega \le \eta < \omega^\omega + \omega^\eta \},$$

$$k = 1, 2, \dots, n.$$

Then we have $\omega^n < \beta(X_{A_n^k}) \le \omega^{n+1} \ \forall k = 1, 2, \dots, n, \ n \in \mathbb{N}$.

We set $A_n = \bigcup_{k=1}^n A_n^{k} \, \forall n \in \mathbb{N}$. Then $X_{A_n} = X_{A_n^1} + \cdots + X_{A_n^n}$ and hence $\omega^n < \beta(X_{A_n}) \le \omega^{n+1}$ for all $n \in \mathbb{N}$.

Then $\sup\{\beta(X_{A_n}): n \in \mathbb{N}\} = \omega^{\omega}$. Also (X_{A_n}) is pointwise converging to X_A .

The proof will be finished by proving that $\gamma((X_{A_n})) \leq \omega + 1$. To see this, if $\varepsilon > 0$ then $K^m_{\varepsilon,(X_{A_n})} \subset \bigcap_{\eta < m\omega} K^{(\eta)}_{\omega}$ for all $m < \omega$ and hence $K^{\omega}_{\varepsilon,(X_{A_n})} \subset \bigcap_{\eta < \omega} K^{(\eta)}_{\omega+1}. \text{ Since the functions } X_{A_n} \text{ are zero on } \bigcap_{\eta < \omega} K^{(\eta)}_{\omega+1} \text{ we have that } K^{\omega+1}_{\varepsilon,(X_{A_n})} = \varnothing.$

Remark 3. Proposition 10 is an example, showing that one of the conditions in Theorem 7 is best possible. Also, there is surely no need to assume K scattered in the statement of the result. I thank the referee for this remark.

- 11. Proposition ([H-O-R]). Let K be a compact metric space, $m \in \mathbb{N}$, $\delta > 0$ and a function $f: K \to \mathbb{R}$ is such that $K^m_{\varepsilon, f} \neq \emptyset$. Then $|f|_D \ge m\delta/4$.
- **12. Proposition.** Let K be a compact metric space, $f \in \mathbb{B}_1(K), \xi < \omega, (f_n) \subset$ DBSC(K) pointwise converging to f, $\gamma((f_n)) \leq \omega^{\xi}$ and $\sup_n |f_n|_D < \infty$. Then $\beta(f) < \omega^{\xi}$.

Proof. Let $\varepsilon > 0$.

Claim 1. $\exists n_0 \in \mathbb{N} : \beta(f_n, \varepsilon/3) = \beta(f_{n_0}, \varepsilon/3) \ \forall n \geq n_0.$

[Proof of Claim 1. Let then $\beta(f_n, \varepsilon/3) = m_n + 1$, where $m_n, n \in \mathbb{N}$. Then $K_{\varepsilon,f_n}^{m_n} \neq \emptyset$ and hence by Proposition 10 we have that $|f_n|_D \geq m_n \varepsilon/12$. If the sequence (m_n) is infinite then $\sup_n |f_n|_D = \infty$, a contradiction.

Thus there is $n_0 \in \mathbb{N}$ such that $m_n = m_{n_0}$ for all $n \geq n_0$.

Claim 2. If $m = \beta(f_{n_0}, \varepsilon/3)$ then $P_{\varepsilon,f}^m \subset P_{\varepsilon/3,(f_n)}'$ for each closed subset P of K.

[Proof of Claim 2. Let $x \in P^m_{\varepsilon,f} \setminus P'_{\varepsilon/3,(f_n)}$. Then there are an open neighborhood V of x in P and $n_0 \in \mathbb{N}$ such that

$$|f_m(y) - f_n(y)| \le \varepsilon/3 \quad \forall n, m \ge n_0, y \in \overline{V}.$$

Then, $|f_{n_0}(y) - f(y)| \le \varepsilon/3$ for all $y \in \overline{V}$ and hence $\overline{V}'_{\varepsilon,f} \subset \overline{V}'_{\varepsilon/3,f_{n_0}}$. Finally, by induction we get $\overline{V}^m_{\varepsilon,f} \subset \overline{V}^m_{\varepsilon/3,f_{n_0}} = \varnothing$. Since $V \cap P^m_{\varepsilon,f} \subset \overline{V}^m_{\varepsilon,f}$ we have $V \cap P^m_{\varepsilon,f} = \varnothing$, a contradiction since $x \in V \cap P^m_{\varepsilon,f}$.

Since $\gamma((f_n)) \leq \omega^{\xi}$ we have that $\gamma((f_n), \varepsilon/3) < \omega^{\xi}$ and hence there is $k < \omega$ such that $\gamma((f_n), \varepsilon/3) < k\omega^{\xi-1}$. Applying Claim 1 we have

$$K^m_{\varepsilon,f}\subset K'_{\varepsilon/3,(f_n)}, K^{2m}_{\varepsilon,f}\subset K''_{\varepsilon/3,(f_n)},\ldots, K^{mk\omega^{\xi-1}}_{\varepsilon,f}\subset K^{k\omega^{\xi-1}}_{\varepsilon/3,(f_n)}=\varnothing.$$

Then $\beta(f,\varepsilon) < km\omega^{\xi-1} < \omega^{\xi}$. Hence it is proved that $\beta(f) < \omega^{\xi}$.

13. **Definition** ([H-O-R]). Define $\mathbb{B}_{1/4}(K)$ to be the set of those f in $\mathbb{B}_1(K)$ for which there is a sequence (f_n) in DBSC(K) that converges uniformly to f and is such that $\sup_n |f_n|_D < \infty$.

14. Theorem ([H-O-R], Th. 6.1). Let K be a compact metric space and let $f \in \mathbb{B}_1(K)$. Then $f \in \mathbb{B}_{1/4}(K)$ iff there exists a $C < \infty$ such that for all $\varepsilon > 0$ there exists a sequence $(s_n)_{n=0}^{\infty} \subset C(K)$, $s_0 = 0$, with (s_n) converging pointwise to f and such that for all subsequences (n_i) of $\{0\} \cup \mathbb{N}$ and $x \in K$,

$$\sum_{j \in B((n_i), x)} |s_{n_{j+1}}(x) - s_{n_j}(x)| \le C,$$

where
$$B((n_i), x) = \{j : |s_{n_{j+1}}(x) - s_{n_j}(x)| \ge \varepsilon\}.$$

The above result gave the idea for the definition of the rank δ (cf. [K-N]). I am grateful to Professor Negrepontis who gave me this idea.

15. Definition. Let K be a compact metric space, $f, s_n : K \to \mathbb{R}$, $n \in \mathbb{N}$, real-valued functions with $s_0 = 0$ such that (s_n) is pointwise converging to f. For each closed subset P of K and $\varepsilon > 0$ we set:

$$P^{0}((s_{n}),\varepsilon) = P,$$

$$P'((s_{n}),\varepsilon) = \begin{cases} x \in P : \forall 0 < C < \infty, \ \forall m \in \mathbb{N}, \ \forall U \subset K \text{ open neighborhood of } x \end{cases}$$

$$\exists j_{p} > \dots > j_{1} \geq m \text{ and } x' \in U \cap P \text{ such that}$$

$$|s_{j_{i+1}}(x') - s_{j_{i}}(x')| > \varepsilon \text{ for } i = 1, 2, \dots, p$$

$$\text{and } \sum_{i=1}^{p} |s_{j_{i+1}}(x') - s_{j_{i}}(x')| > C \end{cases}.$$

For each ordinal $a < \omega_1$ we set

$$P^{a+1}((s_n), \varepsilon) = (P^a((s_n), \varepsilon))'((s_n), \varepsilon).$$

If β is a limit ordinal, we set

$$P^{\beta}((s_n), \varepsilon) = \bigcap_{a < \beta} P^a((s_n), \varepsilon).$$

We set

$$\delta((s_n),\varepsilon) = \begin{cases} \text{the least ordinal } a < \omega_1 \text{ such that } K^a((s_n),\varepsilon) = \varnothing \\ & \text{if such an } a \text{ exists,} \\ \omega_1, & \text{otherwise.} \end{cases}$$

and

$$\delta((s_n)) = \sup \{ \delta((s_n), \varepsilon) : \varepsilon > 0 \}.$$

Remark 4. $\delta((s_n)) \leq \gamma((s_n))$.

We see this as follows: Let P be a closed subset of K, $\varepsilon > 0$ and $x \in P \setminus P^1_{\varepsilon,(s_n)}$. Then there are an open neighborhood of x in P and $p \in \mathbb{N}$ such that for every $y \in U$ and $m, n \in \mathbb{N}$ with $m, n \geq p$ we have $|f_m(y) - f_n(y)| \leq \varepsilon$. By definition of $P'((s_n), \varepsilon)$ we have that $x \notin P'((s_n), \varepsilon)$. Hence $P'((s_n), \varepsilon) \subset P^1_{\varepsilon,(s_n)}$.

16. Proposition ([H-O-R]). Let X be a Banach space and C,D be convex subsets of X. Then

$$\inf\{\|c-d\|:c\in C,d\in D\}=\inf\{\|c-d\|:c\in \widetilde{C},d\in \widetilde{D}\},$$

where \widetilde{C} and \widetilde{D} are the w^* -closure of C and D in X^{**} .

17. Theorem. Let K be a compact metric space, $f \in \mathbb{B}_1(K)$, a sequence $(f_n) \subset C(K)$ pointwise converging to f and $\xi < \omega_1$.

Then the following equivalences are satisfied:

- (i) If $1 \leq \xi < \omega$, then $\beta(f) \leq \omega^{\xi}$ if and only if there exists a sequence (s_n) of convex blocks of (f_n) with $\delta((s_n)) \leq \omega^{\xi-1}$.
- (ii) If $\xi \geq \omega$, then $\beta(f) \leq \omega^{\xi}$ if and only if there exists a sequence (s_n) of convex blocks of (f_n) with $\delta((s_n)) \leq \omega^{\xi}$.

Proof. (i). Necessity. Let $1 \leq \xi < \omega$ and $\beta(f) \leq \omega^{\xi}$. Then by Theorem 7 we have there is a sequence $(F_n) \subset \mathrm{DBSC}(K)$ pointwise converging to f and $\gamma((F_n)) \leq \omega^{\xi}$. Let $\varepsilon > 0$. Then $\gamma((F_n), \frac{\varepsilon}{4}) = \theta + 1 < \omega^{\xi}$.

For every $\eta \leq \theta$ we set $K_{\eta} = K_{\varepsilon/4,(F_n)}^{\eta}$. Then for every $\eta \leq \theta$ and $x \in K_{\eta} \setminus K_{\eta+1}$ there are an open neighborhood $U_{x,\eta}$ of x in K_{η} and $n \in \mathbb{N}$ such that $|F_n(y) - f(y)| \leq \varepsilon/4$ for every $y \in \overline{U}_{x,\eta}$. Since K is a compact metric space we have that for every $\eta \leq \theta$ there exists a countable subset $\{U_{\eta,k} : k \in \mathbb{N}\}$ of $\{U_{x,\eta} : x \in K_{\eta} \setminus K_{\eta+1}\}$ such that

$$\bigcup \{U_{\eta,k} : k \in \mathbb{N}\} = \bigcup \{U_{x,\eta} : x \in K_{\eta} \setminus K_{\eta+1}\}.$$

Let $\{U_{\eta_i,k_i}: i \in \mathbb{N}\}$ be an enumeration of $\{U_{\eta,k}: \eta \leq \theta, k \in \mathbb{N}\}$. Then for every $i \in \mathbb{N} \exists n_1 \in \mathbb{N}$ such that

$$||f - F_{n_i}||_{\overline{U}_{\eta_i, k_i}} < \varepsilon/4.$$

(If M is a subspace of K we set $\| \|_M$ the supremum norm on C(M).)

For every $i \in \mathbb{N}$ let $(f_m^i)_{m=0}^{\infty} \subset C(K)$ with $f_0^i = 0$, $(f_m^i)_{m=0}^{\infty}$ is pointwise converging to F_{n_i} and

$$\sum_{m=0}^{\infty} |f_m^i(y) - f_m^i(y)| \le |F_{n_i}|_D \quad \forall y \in \overline{U}_{\eta_i, k_i}.$$

By (*) and Proposition 16 we have that there exist a sequence (g_m^1) of convex blocks of (f_m) and a sequence (h_m^1) of convex blocks of (f_m^1) such that

$$\|g_m^1 - h_m^1\|_{\overline{U}_{\eta_1,k_1}} < \varepsilon/4 \quad \forall m \in \mathbb{N}.$$

Then for every $m_1, \ldots, m_p \in \mathbb{N}$ with $m_1 < \cdots < m_\rho$ and $y \in \overline{U}_{\eta_1, k_1}$ with $|g^1_{m_{i+1}}(y) - g^1_{m_i}(y)| \ge \varepsilon$ for all $i = 1, \ldots, \rho$ we have

$$(***) \quad \sum_{i=1}^{\rho} |g_{m_{i+1}}^{1}(y) - g_{m_{i}}^{1}(y)| \le \sum_{j=0}^{\infty} |f_{j+1}^{1}(y) - f_{j}^{1}(y)| + \frac{\varepsilon}{2} \frac{2}{\varepsilon} |F_{n_{1}}|_{D} \le 2|F_{n_{1}}|_{D}.$$

[We see this as follows: Let $p,q\in\mathbb{N}$ and $y\in\overline{U}_{\eta_1,k_1}$ with $|g_p^1(y)-g_q^1(y)|\geq \varepsilon$. Then by (**) we have

$$(1) \qquad \varepsilon \leq |g_p^1(y) - g_q^1(y)| \leq \frac{\varepsilon}{2} + |h_p^1(y) - h_q^1(y)| \Rightarrow |h_p^1(y) - h_q^1(y)| \geq \frac{\varepsilon}{2}.$$

Also, $\sum_{i=1}^{\rho} |g_{m_{i+1}}^1(y) - g_{m_i}^1(y)| \le \sum_{j=0}^{\infty} |f_{j+1}^1(y) - f_j^1(y)| + \frac{\varepsilon}{2}\rho \le |F_{n_1}|_D + \frac{\varepsilon}{2}\rho$. By (1) we have

$$\rho \frac{\varepsilon}{2} \le \sum_{i=1}^{\rho} |h_{m_{i+1}}^1(y) - h_{m_i}^1(y)| \le |F_{n_1}|_D \Rightarrow \rho \le \frac{2}{\varepsilon} |F_{n_1}|_D.$$

Hence the proof of (***) is finished.

By induction, for every $i \in \mathbb{N}$ we get a sequence (g_m^{i+1}) of convex blocks of (g_m^i) such that $\forall \rho \in \mathbb{N}, m_1, \dots, m_\rho \in \mathbb{N}$ with $m_1 < \dots < m_\rho$ and $y \in \overline{U}_{\eta_i, k_i}$ with $|g_{m_{j+1}}^{i+1}(y) - g_{m_j}^{i+1}(y)| \ge \varepsilon$ for all $j = 1, \dots, \rho$ we have

$$\sum_{j=1}^{\rho} |g_{m_{j+1}}^{i+1}(y) - g_{m_{j}}^{i+1}(y)| \le 2|F_{n_{i+1}}|_{D}.$$

We set $s_0 = 0$ and $s_n = g_n^n$ for all $n \in \mathbb{N}$. Then (s_n) is pointwise converging to f and $K^{\eta}((s_n), \varepsilon) \subset K_{\eta}$ for all $\eta \leq \theta + 1$. Hence $K^{\theta+1}((s_n), \varepsilon) = \emptyset$ and hence $\delta((s_n)) \leq \omega^{\xi-1}$.

Sufficiency. Let $\delta((s_n)) \leq \omega^{\xi-1}$. We shall show that $\gamma((s_n)) \leq \omega^{\xi}$ and since $\beta(f) \leq \gamma((s_n))$ we have that $\beta(f) \leq \omega^{\xi}$. Hence we shall show that $P_{\varepsilon,(s_n)}^{\omega} \subset P'((s_n), \varepsilon/2)$ for all closed subsets P of K.

Let P be a closed subset of K and let $x \in P_{\varepsilon,(s_n)}^{\omega} \setminus P'((s_n), \varepsilon/2)$. Then there are a positive real number C, an open neighborhood U of x in P and $m \in \mathbb{N}$ such that $\forall p \in \mathbb{N}, n_1, \ldots, n_p \in \mathbb{N}$ with $n_p > \cdots > n_1 \geq m$ and $y \in U$ with $|s_{n_{i+1}}(y) - s_{n_i}(y)| \geq \varepsilon/2$ for all $i = 1, \ldots, p$ we have $\sum_{i=1}^p |s_{n_{i+1}}(y) - s_{n_i}(y)| \leq C$.

Then $p < \frac{C}{\varepsilon}$. Let $n \in \mathbb{N}$ with $n > \frac{C}{\varepsilon}$. Then $x \in P_{\varepsilon,(s_n)}^n$. We shall show that there are $y \in U$ and $m_1, \ldots, m_{n+1} \in \mathbb{N}$ with $m_{n+1} > \cdots > m_1 \geq m$ such that $|s_{m_{j+1}}(y) - s_{m_j}(y)| > \varepsilon/2$ for all $j = 1, \ldots, n$, and we shall terminate in a contradiction.

We see this as follows:

$$x \in P_{\varepsilon,(s_n)}^n \cap U \Rightarrow \exists x_1 \in P_{\varepsilon,(s_n)}^{n-1} \cap U \text{ and } m_1, m_2 \in \mathbb{N} \text{ with } m_2 > m_1 \ge m \text{ and } |s_{m_2}(x_1) - s_{m_1}(x_1)| > \varepsilon > \varepsilon/2.$$

We set $V_1 = \{y \in U : |s_{m_2}(y) - s_{m_1}(y)| > \varepsilon/2\}$. V_1 is open and $x_1 \in V_1 \cap P_{\varepsilon,(s_n)}^{n-1}$; hence $\exists x_2 \in P_{\varepsilon,(s_n)}^{n-2} \cap V_1$ and $m_3 \in \mathbb{N}$ such that $m_3 > m_2$ and $|s_{m_3}(x_2) - s_{m_2}(x_2)| > \varepsilon/2$ (since if $|s_m(y) - s_{m_2}(y)| \le \varepsilon/2$ for every $m \ge m_2$ and $y \in P_{\varepsilon,(s_n)}^{n-2} \cap V_1$, then $|s_m(y) - s_k(y)| \le \varepsilon$ for all $m, k \ge m_2$ and $y \in P_{\varepsilon,(s_n)}^{n-2} \cap V_1$, that is, $x_1 \notin P_{\varepsilon,(s_n)}^{n-1}$ which is a contradiction).

We set $V_2 = \{y \in V_1 : |s_{m_3}(y) - s_{m_2}(y)| > \varepsilon/2\}$. V_2 is open in P and $x_2 \in V_2 \subset V_1$.

By induction we get $m_1, \ldots, m_n \in \mathbb{N}$ with $m_n > \cdots > m_1 \geq m$, V_1, \ldots, V_{n-1} open subsets of P with $V_{n-1} \subset \cdots \subset V_1 \subset U$ and $x_1 \in P_{\varepsilon,(s_n)}^{n-1} \cap V_{i-1}$ for all $i = 1, \ldots, n$ (where $V_0 = U$) such that $|s_{m_{i+1}}(y) - s_{m_i}(y)| > \varepsilon/2$ for all $y \in V_i$, $i = 1, \ldots, n-1$. We set $V_n = \{y \in V_{n-1} : |s_{m_n}(y) - s_{m_{n-1}}(y)| > \varepsilon/2\}$. V_n is open in P and $x_{n-1} \in P'_{\varepsilon,(s_n)} \cap V_n$; hence there is $y \in V_n$ and $m_{n+1} > m_n$ such that $|s_{m_{n+1}}(y) - s_{m_n}(y)| > \varepsilon/2$.

Then $|s_{m_{j+1}}(y) - s_{m_j}(y)| > \varepsilon/2$ for all j = 1, ..., n. Hence the proof of (i) is finished.

(ii) Necessity. By Theorem 5 we have that if $f \in \mathbb{B}_1(K)$ with $\beta(f) \leq \omega^{\xi}$ then there is a sequence (s_n) of convex blocks of (f_n) with $\gamma((s_n)) \leq \omega^{\xi}$.

Then by Remark 4 we get a conclusion.

Sufficiency. As in (i) we prove that $P^{\omega}_{\varepsilon,(s_n)} \subset P'((s_n), \varepsilon/2)$ for all closed subsets P of K and $\varepsilon > 0$. Then by induction we get $K^{\omega^{n+1}}_{\varepsilon,(s_n)} \subset K^{\omega^n}((s_n), \varepsilon/2)$ for all

 $n \in \mathbb{N}$ and hence $K_{\varepsilon,(s_n)}^{\omega^{\omega}} \subset K^{\omega^{\omega}}((s_n), \varepsilon/2)$. Finally, by induction we get $K_{\varepsilon,(s_n)}^{\omega^{\xi}} \subset K^{\omega^{\xi}}((s_n), \varepsilon/2)$ for all $\varepsilon > 0$.

Remark 5. If (s_n) is a sequence of continuous real-valued functions on K with $\delta((s_n)) < \omega_1$, then (s_n) converges pointwise.

[We see this is follows: As is proved in the demonstration of the sufficiency of Theorem 17 (i) we have that $P_{\varepsilon,(s_n)}^{\omega} \subset P'((s_n), \varepsilon/2)$ for all closed subsets P of K and hence

$$K_{\varepsilon,(s_n)}^{\omega^{\xi+1}} \subset K^{\omega^{\xi}}((s_n), \varepsilon/2)$$
 for all $\xi < \omega_1$.

Assume that $\delta((s_n)) < \omega_1$. Then there is a $\xi < \omega_1$ such that $\delta((s_n)) < \omega^{\xi}$; hence $K^{\omega^{\xi}}((s_n), \varepsilon) = \emptyset$ for all $\varepsilon > 0$ and thus $K^{\omega^{\xi+1}}_{\varepsilon,(s_n)} = \emptyset$ for all $\varepsilon > 0$. Then $\gamma((s_n), \varepsilon) < \omega^{\xi+1}$ for all $\varepsilon > 0$; hence $\gamma((s_n)) \le \omega^{\xi+1} < \omega_1$ and thus the sequence (s_n) converges pointwise (cf. [K-L]).]

I thank the referee for this remark.

ACKNOWLEDGMENT

The results of this paper form a portion of my Doctoral Dissertation. I would like to thank Professor Stylianos Negrepontis, my adviser, for suggesting this problem to me and for many helpful conversations about the matter treated here. Also I would like to thank the referee for his (her) kind corrections and helpful comments.

References

- [G-H] D. C. Gillespie and H. A. Hurwicz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), 527–543.
- [H-O-R] R. Haydon, E. Odell and H. P. Rosenthal, Certain subclasses of Baire-1 functions with Banach space applications, Longhorn Notes, University of Texas at Austin Functional Analysis Seminar 1987–89.
- [K-L] A. S. Kechris and A. Louveau, A classification of Baire class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209–236. MR 90f:26005
- [K-N] P. Kiriakouli and S. Negrepontis, A classification of Baire-1 functions, unpublished.
- [Z] Z. Zalcwasser, Sur une propriete du champ des fonctions continues, Studia Math. 2 (1930), 63–67.

Department of Mathematics, University of Athens, Panepistimiopolis 15784, Athens, Greece